lunes, 28 de marzo de 2011

Semana 11 jueves

 

Equipo
6.2 Cuantización de la energía y efecto fotoeléctrico.
6.3 Espectros de emisión y absorción de gases.
1
El efecto fotoeléctrico es un fenómeno muy popular en física, especialmente porque fue gracias al cual Einstein ganó el premio Nobel de física en 1921 (y no por la teoría de la relatividad, como muchos piensan.) Se trata de una de las formas en las que la luz interactúa con la materia; en particular, cuando incide un haz sobre un metal, algunos electrones son emitidos con diferentes energías. El fenómeno ya había sido observado en 1839 por Becquerel, pero no fue hasta fines del siglo XIX y los primeros años del XX que se comenzó a estudiar en profundidad.

Un metal puede ser pensado como una serie de núcleos que tienen electrones a su alrededor. Los electrones que estén más lejos del núcleo se podrán mover prácticamente libremente; estos son los electrones que transmiten la corriente eléctrica, por ejemplo. Sin embargo a estos electrones les falta un poco de energía para poder salir del metal y esta energía puede ser provista por un rayo de luz. La peculiaridad de los experimentos que se realizaron a fines de 1800 es que no respondían a las predicciones teóricas y no había forma de salvar estas contradicciones; fue este simple experimento el que desató, años más tarde el Clásica Vs. Cuántica, con Einstein como uno de sus propulsores.
La luz puede ser pensada como una onda que se propaga, al igual que el movimiento de la superficie del agua luego de arrojar una piedra sobre ella. Este movimiento tendrá dos características fundamentales: la amplitud y la frecuencia; es decir que tan alta es la onda y que tan seguido se producen. En el caso de la luz, la amplitud determina lo que se llama Intensidad. Clásicamente lo que se pensaba era que las ondas podían entregar energía a los electrones del metal paulatinamente, hasta que alcanzaran el nivel suficiente para ser desprendidos de la superficie. Esto quiere decir que cuanto más intensa fuera la luz, los electrones arrancados deberían poseer más energía (deberían haber recibido más energía del rayo luminoso.) Sin embargo experimentalmente se observó que la energía de los electrones eyectados del metal era independiente de la intensidad de la luz que recibían, pero que variaba con la frecuencia.
Espectro de absorción: se presenta cuando un solido incandescente
se encuentra rodeado por un gas más frio, el espectro resultante
muestra un fondo interrumpido por espacios oscuros denominados
líneas de absorción, porque el gas ha absorbido de la luz aquellos
colores que éste irradia por sí mismo. Suele ocurrir que unos cuerpo
absorben sólo la radiación de unas determinadas longitudes de onda y
no aceptan absorber otras de otras longitudes, por lo que cada cuerpo,
cada elemento químico en la práctica, tiene su propio espectro de
absorción, el cual se corresponde con su espectro de emisión, al igual
como si fuera el negativo con el positivo de una película.
En la naturaleza se da también que otros cuerpos absorben radiación de
otros cuerpos dejando rayas negras.

Espectro de emisión: mediante suministro de energía calorífica, se
estimula un determinado elemento en su fase gaseosa, sus átomos
emiten radiación en ciertas frecuencias del visible, que constituyen su
espectro de emisión. Ninguno de estos se repite. Por ejemplo, algunos
de ellos lo hacen en el infrarrojo y otros cuerpos no. Ello depende de la
constitución específica de cada cuerpo, ya que cada uno de los
elementos químicos tiene su propio espectro de emisión.

2
Espectro de la radiación del cuerpo negro, resuelto por Max Planck con la cuantización de la energía. La energía total del cuerpo negro resultó que tomaba valores discretos más que continuos. Este fenómeno se llamó cuantización, y los intervalos posibles más pequeños entre los valores discretos son llamados quanta (singular: quantum, de la palabra latina para "cantidad", de ahí el nombre de mecánica cuántica.
Efecto fotoelectrico

La emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica
Espectro de absorción: se presenta cuando un solido incandescente
se encuentra rodeado por un gas más frio, el espectro resultante
muestra un fondo interrumpido por espacios oscuros denominados
líneas de absorción, porque el gas ha absorbido de la luz aquellos
colores que éste irradia por sí mismo.
Espectro de emisión: mediante suministro de energía calorífica, se
estimula un determinado elemento en su fase gaseosa, sus átomos
emiten radiación en ciertas frecuencias del visible, que constituyen su
espectro de emisión. Ninguno de estos se repite


3


4


5
El efecto fotoeléctrico es un fenómeno muy popular en física, Se trata de una de las formas en las que la luz interactúa con la materia; en particular, cuando incide un haz sobre un metal, algunos electrones son emitidos con diferentes energías. El fenómeno ya había sido observado en 1839 por Becquerel, pero no fue hasta fines del siglo XIX y los primeros años del XX que se comenzó a estudiar en profundidad.
Un metal puede ser pensado como una serie de núcleos que tienen electrones a su alrededor. Los electrones que estén más lejos del núcleo se podrán mover prácticamente libremente; estos son los electrones que transmiten la corriente eléctrica, por ejemplo. Sin embargo a estos electrones les falta un poco de energía para poder salir del metal y esta energía puede ser provista por un rayo de luz

Resultado de la separación de los componentes de distinta longitud de onda de la luz o de otra radiación electromagnética. Los espectros pueden ser de emisión o de absorción y cada uno de ellos a su vez puede ser continuo y discontinuo (de rayos o bandas). Los espectros de emisión se obtienen a partir de la radiación emitida directamente sobre el cuerpo. Los espectros de emisión continuos se obtienen al pasar la luz de un cuerpo incandescente a través de un prisma óptico (luz solar, bombilla de filamento). Los espectros de emisión discontinuos los producen gases o vapores a elevada temperatura. Los rayos proceden de emisiones de átomos excitados, mientras que los de la banda proceden de las moléculas excitadas.
 Los espectros de absorción se forman cuando una radiación luminosa compuesta pasa a través de un cuerpo y este la absorbe total o parcialmente. Cuando la absorción es total, se obtiene un espectro continuo porque faltan todas las radiaciones absorbidas entre dos frecuencias distintas.
6
La emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica. Sus características esenciales son:
  • Para cada sustancia hay una frecuencia mínima o umbral de la radiación electromagnética por debajo de la cual no se producen fotoelectrones por más intensa que sea la radiación.
  • La emisión electrónica aumenta cuando se incrementa la intensidad de la radiación que incide sobre la superficie del metal, ya que hay más energía disponible para liberar electrones.
En los metales hay electrones que se mueven más o menos libremente a través de la red cristalina, estos electrones no escapan del metal a temperaturas normales por que no tienen energía suficiente. Calentando el metal es una manera de aumentar su energía. Los electrones "evaporados" se denominan termoelectrones, este es el tipo de emisión que hay en las válvulas electrónicas. Vamos a ver que también se pueden liberar electrones (fotoelectrones) mediante la absorción por el metal de la energía de radiación electromagnética.
La experiencia que realizaron Franck y Hertz en 1914 es uno de los experimentos claves que ayudaron a establecer la teoría atómica moderna. Nos muestra que los átomos absorben energía en pequeñas porciones o cuantos de energía, confirmando los postulados de Bohr. Mediante una simulación se tratará de explicar las características esenciales de este sencillo experimento, observando el movimiento de los electrones y sus choques con los átomos de mercurio, e investigando el comportamiento de la corriente Ic con la diferencia de potencial U que se establece entre el cátodo y la rejilla.
Cada átomo es capaz de emitir o absorber radiación electromagnética, aunque solamente en algunas frecuencias que son características propias de cada uno de los diferentes elementos químicos.
Si, mediante suministro de energía calorífica, se estimula un determinado elemento en su fase gaseosa, sus átomos emiten radiación en ciertas frecuencias del visible, que constituyen su espectro de emisión.
Si el mismo elemento, también en estado de gas, recibe radiación electromagnética, absorbe en ciertas frecuencias del visible, precisamente las mismas en las que emite cuando se estimula mediante calor. Este será su espectro de absorción.



Espectros de emisión y de absorción

Material: Asa con alambre de platino., lámpara de alcohol, vaso de precipitados de 100 ml.espectroscopio
Sustancias: Cloruros de : Bario, calcio, estroncio,sodio.Acido clorhídrico.

Procedimiento:
Humedecer el asa del alambre de platino y Colocar una muestra de cada sustancias en el extremo del alambre de platino,
Colocar a la flama de la lámpara de alcohol la sustancia y observar la coloración de la flama, observar la flama con el espectroscopio y anotar sus observaciones en el cuadro.
sustancia
Numero de electrones
Color a la flama
Colores del espectro.
Cloruro de bario

Verde amarillento

Cloruro de calcio

Naranja

Cloruro de estroncio

Rojo

Cloruro de sodio

Rojo

Cloruro de cobre

Azul





1 comentario: